检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2015年第7期1162-1170,共9页Control and Decision
摘 要:以二阶系统为研究对象,在线性扩张观测器(LESO)的基础上,给出高增益形式的高阶LESO.基于高阶线性自抗扰控制器(HLADRC)二自由度闭环传递函数和频域特性曲线,证明了其状态估计误差的收敛性以及高阶线性自抗扰控制器的稳定性.同时,系统地分析了输入增益和模型参数不确定性对稳定鲁棒性的影响,推导出满足系统稳定条件的参数b的稳定域以及系统干扰抑制动态特性与带宽的关系.最后,通过与线性自抗扰控制器(LADRC)的对比仿真表明,HLADRC在干扰抑制方面具有很大的优势,而LADRC在稳定鲁棒性和控制品质方面具有更好的效果,从而为工程设计提供了理论依据和实践参考.Based on the linear extended state observer(LESO), a high-order LESO of high-gain form for the second-order plant is proposed. The convergence of the state estimation error of HLESO and the stability of high-order liner active disturbance rejection control(HLADRC) is proved. Simultaneously, robustness for input gain uncertainty and model uncertainty are analyzed based on the two-degree-of-freedom(2dof) closed-loop transfer function and frequency response. Then, the region of parameter b where the closed-loop system is stable and the relationship between the dynamic characteristics of rejection for external disturbance and controller bandwidth is discussed. Finally, simulation experiment is carried out by comparing with liner liner active disturbance rejection control. The results show that the HLADRC has a stronger anti-disturbance ability and convergence performance, but in this case the LADRC has a better robust stability and performance, establishing both the conceptual and pactical foundation for engineering design.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81