一种基于子空间划分的打印机光谱预测模型  

A Subspace Partition-based Model for Printer Spectral Prediction

在线阅读下载全文

作  者:刘真[1] 于海琦[1] 田全慧[2] 

机构地区:[1]上海理工大学,上海200093 [2]上海出版印刷高等专科学校,上海200093

出  处:《包装工程》2015年第13期122-124,129,共4页Packaging Engineering

基  金:国家自然科学基金青年基金(61301231);上海市研究生创新基金(JWCXSL1402)

摘  要:目的实现打印机的光谱预测。方法提出一种基于子空间划分的径向基函数(RBF)神经网络模型,将打印机颜色空间划分成若干子空间,在子空间中运用RBF神经网络,对任意输入打印机驱动值根据其所在子空间实现其光谱值的预测。结果该模型的预测精度较未进行子空间划分模型的有明显提高。结论该模型能够满足高精度打印机光谱预测的要求。The aim of this study was to establish a printer spectral prediction model using RBF(Radial Basis Function)neural network based on subspace partition. The color space of printer was divided into subspaces and RBF neural network models were applied in subspaces with least square method. Spectral reflectance of any printer motivation values were predicted by RBF neural network according to their own space. Experimental results showed that prediction accuracy of the model was obviously improved compared with models without subspace partition, which can satisfy the requirement of high-precision spectral prediction of printer.

关 键 词:RBF神经网络 光谱预测 打印机 子空间划分 

分 类 号:TS803.6[轻工技术与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象