基于遗传-神经网络的电网流域面雨量预报方法研究  被引量:2

A Prediction Scheme with Genetic-Neural Network for Area Rainfall over Power Basin

在线阅读下载全文

作  者:覃武 林开平[2] 黄颖[3] 李勇 钟利华 罗小莉 

机构地区:[1]广西区气象局,广西南宁530022 [2]广西区气象台,广西南宁530022 [3]广西气象减灾研究所,广西南宁530022 [4]广西气象服务中心,广西南宁530022

出  处:《灾害学》2015年第3期33-37,共5页Journal of Catastrophology

基  金:广西科学研究与技术开发计划项目(桂科攻1355010-4);广西自然科学基金北部湾重大专项项目(2011GXNSFE018006)

摘  要:以重点水力发电厂和大中型水库为主要考量,并兼顾地形地貌和中小河流的分布特征,将广西划分为23个电网流域,研究了基于非线性的神经网络电网流域面雨量预报方法。以5-6月龙滩近库区、龙江流域等6个电网流域为例,利用遗传算法优化BP神经网络的连接权和网络结构,建立了各电网流域的遗传-神经网络电网流域面雨量预报模型。对独立样本的预报结果表明,基于遗传-神经网络的电网流域面雨量预报模型的预报能力要优于传统的逐步回归预报模型,也明显优于日本、德国数值模式预报产品所换算成的电网流域面雨量预报,并与气象部门同期制作的综合面雨量预报产品能力相当,因而,遗传-神经网络面雨量集合预报模型有较好的业务应用前景。Taking the key hydropower plant and large and middle reservoirs as a major consideration,23 pow-er basin in Guangxi are divided based on the landform and physiognomy and the distribution of medium and small rivers,and a nonlinear neural network prediction method for area rainfall over power basin has been developed.For the six power basin in May and June,such as Long Tan and Long Jiang power basin,the genetic neural network prediction models for area rainfall over power basin are established,and the connection weight and structure of the BP neural network is optimized using the genetic algorithm.Results of independent samples show that the genetic neural network prediction model is better than the traditional stepwise regression method for area rainfall over power basin,and is superior to the predictions converted from Japan and Germany numerical prediction products,moreo-ver,the prediction capacity of the genetic neural network model is the same as that of the corresponding integrated area rainfall prediction products from meteorological department.Therefore,the genetic neural network model for area rainfall over power basin opens up a vast range of possibilities for operational weather prediction.

关 键 词:遗传算法 人工神经网络 电网流域 面雨量 预报 广西 

分 类 号:P457[天文地球—大气科学及气象学] X4[环境科学与工程—灾害防治]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象