检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵健[1] 张国策[2] 陈立群[1,2,3]
机构地区:[1]上海大学上海市应用数学和力学研究所,上海200072 [2]上海大学理学院力学系,上海200444 [3]上海市力学在能源工程中的应用重点实验室(上海大学),上海200072
出 处:《应用数学和力学》2015年第8期805-813,共9页Applied Mathematics and Mechanics
基 金:国家自然科学基金(重点项目)(11232009);上海市重点学科项目(S30106)~~
摘 要:根据磁振子压电能量采集器实验系统的数学模型,基于系统静平衡位形,引入坐标变换,建立相对位移的标准控制方程.利用Taylor级数展开法处理磁力非线性项,运用多尺度法近似解析分析,通过消除长期项获得可解性条件,并由此推导出稳态响应时的幅频关系.四阶Runge-Kutta方法用于数值计算受迫振动时间历程,数值算例给出了系统前两阶主共振下的稳态幅频响应关系及其失稳区域.结果表明,多尺度方法所得到的一致有效解具有较高精度,可以为优化设计磁振子压电能量采集器提供理论依据.A piezoelectric energy harvester with a magnetic oscillator was studied. The dynamic equation was derived via introduction of coordinate transform based on the equih'brium configu- ration. The Taylor series expansion method was employed to deal with the nonlinear function of the magnetic force. The multi-scale method was applied to obtain the steady-state periodic solu- tions of the system. The solvability condition and the amplitude-frequency relationship were de- rived through elimination of the secular terms. Then the Runge-Kutta method was used to nu- mericaUy calculate the system' s forced vibration time history and give the amplitude-frequency response characteristics and instability boundary of the 1st 2 primary resonance cases. The re- sults show that the multi-scale analysis yields uniformly valid solutions of high accuracy, and provides a theoretic base for the optimal design of piezoelectric energy harvesters with magnetic oscillators.
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117