检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王超[1] 王建辉[1] 顾树生[1] 张宇献[2]
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819 [2]沈阳工业大学电气工程学院,辽宁沈阳110870
出 处:《东北大学学报(自然科学版)》2015年第8期1084-1088,共5页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(61102124);辽宁省科学技术计划项目(JH2/101)
摘 要:带钢退火过程中存在多变量非线性主导因素和数据噪声,难以用数学模型精确描述退火炉内带钢的延伸量.针对这一问题,提出基于核主元分析(KPCA)与免疫粒子群(ICPSO)优化最小二乘支持向量机(LSSVM)的炉内带钢延伸量软测量方法.采用ICPSO算法避免了粒子群算法易陷入局部最优的缺陷,利用ICPSO对LSSVM进行参数寻优,通过KPCA去除样本噪声,提取输入数据样本中的非线性主元信息,建立ICPSO-LSSVM软测量模型.此方法用于退火炉内带钢延伸量预测,通过现场生产数据仿真实验进行非线性函数估计;对比其他几种现有算法,实验结果表明本文方法具有较高的预测精度.The strip elongation is difficult to predict accurately with mathematical model, which related with multi-variable nonlinear factors and data noise in the annealing process. Thus, the optimal soft-sensing method was proposed based on kernel principal component analysis (KPCA) and optimized least squares support vector machine (LSSVM) by immune clone particle swarm optimization (ICPSO). ICPSO can avoid the particles sinking into premature convergence and running into local optimization in the iterative process which was generated by particle swarm optimization (PSO) algorithm, and can also optimize the parameters of LSSVM. Then, KPCA was used to denoise the input data set and capture the high-dimensional nonlinear principal components in input data space, and the principal components were input into the ICPSO-LSSVM model to establish the soft-sensing prediction model. The proposed method was successfully applied to the strip elongation prediction in annealing furnace. The simulation results show that the KPCA and ICPSO-LSSVM model have higher prediction accuracy, compared with other algorithms.
关 键 词:核主元分析 带钢延伸量 免疫粒子群算法 最小二乘支持向量机 软测量
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.4.109