检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《黑龙江大学自然科学学报》2015年第4期485-489,共5页Journal of Natural Science of Heilongjiang University
基 金:Supported by the National Natural Science Foundation of China(11461032;11401267;11326238);the Natural Science Foundation of Jiangxi Province(20151bab201013);the Youth Foundation of Jiangxi Provincial Education Department(GJJ13376);the Research Foundation of Jiangxi University of Science and Techology(JxxJ bs1 2002;nsfj 2015-K17)
摘 要:经典的倒向随机微分方程以布朗运动为干扰源。研究由连续半鞅驱动的倒向随机微分方程,在生成元满足一定的非Lipschitz条件下,通过构造一个Picard序列的方法,利用It^o公式、Lebesgue控制收敛定理和常微分方程的比较定理,证明其解是存在并且唯一的,对经典倒向随机微分方程进行了实质性的推广。The classical backward stochastic differential equations are taken the Brownian motion as the noise source. The backward stochastic equations driven by continuous semi-martingale are studied. A general existence and uniqueness result of the solutions is established under certain non-Lipschitz condition on the generator by constructing Picard sequence and using Ito^ formula,Lebesgue's dominated convergence theorem and the comparison of ordinary differential equation. This conducts a substantial extension of the classical backward stochastic differential equations.
关 键 词:倒向随机微分方程 连续半鞅 非Lipschitz系数 存在性 唯一性
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38