检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《测绘与空间地理信息》2015年第9期51-53,56,共4页Geomatics & Spatial Information Technology
基 金:广西研究生教育创新计划项目(YCSZ2014151)资助
摘 要:路基是高速铁路的轨道基础,是整个线路结构中最为薄弱的环节,对线路的平顺性、稳定性特别敏感,加强对高铁路基的沉降变形分析是确保路基工程施工质量和保障运营安全的重要环节。引入小波神经网络组合模型应用到高铁路基的沉降变形分析中,通过工程实例分析表明,小波神经网络组合模型预测精度较BP神经网络模型高,在高铁路基的沉降变形分析中具有更好的优越性和应用效果。Subgrade is the basis of high speed railway track, is the most weak link in the whole structure, particularly sensitive to smooth lines, stability, strengthen the base of high speed railway subgrade engineering settlement deformation analysis is to ensure that the important hnk of the construction quality and operation safety. The wavelet neural network combination model was introduced and applied to the subgrade of high speed railway subsidence deformation analysis, through the analysis of engineering examples show that the wavelet neural network combination model prediction accuracy than BP neural network model is high, and has better advantages and application effect in the settlement deformation analysis of the high speed railway subgrade.
分 类 号:P25[天文地球—测绘科学与技术] TU196[建筑科学—建筑理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.45