检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王威[1] 冯晓蕾[1] 段晓冉 王团伟[1] 谭善娟[1] 吴逸明[1] 吴拥军[1]
机构地区:[1]郑州大学公共卫生学院劳动卫生与卫生毒理学教研室,郑州450001
出 处:《郑州大学学报(医学版)》2015年第4期462-465,共4页Journal of Zhengzhou University(Medical Sciences)
基 金:国家自然科学基金项目30972457;81001239;河南省科技攻关计划项目142102310116
摘 要:目的::探讨基于外周血白细胞 DNA FHIT、RASSF1A 和 p16基因启动子甲基化水平以及 DNA 端粒长度等4项生物标志建立的支持向量机模型在肺癌诊断中的意义。方法:通过实时定量甲基化特异性 PCR 法,测定200例正常人(对照组)和200例肺癌患者外周血白细胞 DNA 中 FHIT、RASSF1A 和 p16基因启动子甲基化水平,实时荧光定量 PCR 方法测定外周血 DNA 相对端粒长度,基于上述4种生物标志构建肺癌诊断支持向量机模型。结果:肺癌组和对照组中 FHIT、RASSF1A 和 p16基因启动子甲基化水平分别为3.33(1.86~6.40)和2.85(1.39~5.44),27.62(9.09~52.86)和17.17(3.86~50.87),0.59(0.16~4.50)和0.36(0.06~4.00),端粒长度分别为(0.93±0.32) kb 和(1.16±0.57) kb,两组间差异有统计学意义(Z =3.044、2.075、2.641和4.972,P 均〈0.05)。基于上述4项生物标志建立的判别分析和支持向量机模型对预测集的 ROC 曲线下面积及95% CI 分别为0.670(0.569~0.761)和0.810(0.719~0.882)。结论:成功构建基于 p16、RASSF1A、FHIT 基因启动子甲基化和端粒长度的肺癌诊断支持向量机模型。Aim: To explore significance of support vector machine(SVM) model for diagnosis of lung cancer by de-tections of fragile histidine traid(FHIT),RASSF1A and p16 gene promoter methylation status and relative telomere length of DNA in white blood cells(WBCs) from peripheral blood. Methods: The status of p16,RASSF1A and FHIT gene promoter methylation and relative telomere length of DNA in WBCs from peripheral blood of 200 healthy individuals(control group) and 200 patients with lung cancer were measured by SYBR green-based quantitative methylation-specific PCR and quantita-tive PCR, respectively. Then SVM model based on the above 4 biomarkers was developed. Results: The status of FHIT, RASSF1A and p16 gene promoter methylation was 3. 33(1. 86 - 6. 40) and 2. 85(1. 39 - 5. 44),27. 62(9. 09 - 52. 86) and 17. 17(3. 86 - 50. 87),0. 59(0. 16 - 4. 50) and 0. 36(0. 06 - 4. 00) in lung cancer group and control group, and rel-ative telomere length was (0. 93 ± 0. 32) kb and (1. 16 ± 0. 57) kb. There were significant differences in the 4 biomarkers (Z = 3. 044,2. 075,2. 641, and 4. 972,P 〈 0. 05). Areas of discrimination analysis and SVM model based on the 4 biomar-kers under receiver operating curve and the 95% CI were 0. 670(0. 569 - 0. 761) and 0. 810(0. 719 - 0. 882), respective-ly. Conclusion: The SVM model for lung cancer diagnosis based on the 4 biomarkers as p16, RASSF1A, FHIT promoter methylation and relative telomere length has been successfully established.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112