检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许枫[1] 张乔[1,2] 张纯[1] 苏瑞文[1,2]
机构地区:[1]中国科学院声学研究所,北京100190 [2]中国科学院大学,北京100049
出 处:《应用声学》2015年第5期465-470,共6页Journal of Applied Acoustics
基 金:山东省科技发展计划项目(2013GHY11517)
摘 要:鱼种的快速识别是渔业资源评估乃至海洋生态系统监测重要组成部分。声学方法是主流识别方法中的重要组成部分,目前常用的声学识别方法主要基于鱼类的回波信号。传统的回波包络或能量特征很难全面的表述鱼体回波信号信息,因此鱼类识别效果一般。本文提出一种基于Walsh变换的鱼类回波识别方法。试验获取鲫鱼、嘎鱼、武昌鱼的回波信号,处理过程中分别提取三种鱼类回波包络信号的Walsh谱作为识别特征量,并利用BP神经网络分类器对其进行了分类。结果表明利用回波的Walsh谱可以成功识别不同形状的鱼类,其中对武昌鱼的识别正确率达90%以上。The fast and efficient fish identification is the composition of fishery survey and marine ecosystem monitoring. The identification method based on active acoustics is the most important one. The fish identifi- cation is limited, due to the traditional echo envelop and energy way cannot describe the fish backscattering properly. A method of fish identification based on Walsh transform is proposed in this paper. Firstly, an ex situ experiment has been performed with three kinds of fish: Crucian carp (Carassius auratus), Yellow-headed catfish (Pelteobagrus fulvidraco) and Bluntnose black bream (Megalobrama amblycephale). The backscatter- ing signals of these fishes are obtained to verify this method. Then, the Walsh spectrum of backscattering is extracted as the indicator to describe these three kinds of fish species. Finally, three kinds of fish are success- fully identified by using a BP neural network. The result shows that it's possible to identify fish with different shape using Walsh transform.
关 键 词:WALSH变换 特征提取 鱼类识别 BP神经网络
分 类 号:TB566[交通运输工程—水声工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229