检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学土木工程系,土木工程安全与耐久教育部重点实验室,北京100084
出 处:《工程力学》2015年第9期16-19,共4页Engineering Mechanics
基 金:国家自然科学基金项目(51378293,51078199);清华大学自主科研计划项目(2011THZ03)
摘 要:该文对一维C1有限元后处理超收敛计算的EEP(单元能量投影)法简约格式中的位移解给出误差估计的数学证明,即对足够光滑问题的m(>3)次单元的有限元解答,采用EEP法简约格式得到的单元内任一点位移超收敛解均可以达到hm+2的收敛阶,比常规有限元位移解的收敛阶至少高一阶。For one-dimensional C^1 problems of the Ritz Finite Element Method (FEM), an error estimate of the super-convergent displacement is presented for the simplified form of the Element Energy Projection (EEP) method used for super-convergence computation in post-processing stage of FEM. The mathematical analysis proves that for elements of degree m(〉3) with sufficiently smooth problems and solutions, EEP displacement of the simplified form is capable of producing a convergence order of h^m+2 at any point on an element, i.e. being at least one order higher than the displacement from conventional FEM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229