Oxygen-glucose deprivation regulates BACE1 expression through induction of autophagy in Neuro-2a/APP695 cells  被引量:3

Oxygen-glucose deprivation regulates BACE1 expression through induction of autophagy in Neuro-2a/APP695 cells

在线阅读下载全文

作  者:Rong-fu Chen Ting Zhang Yin-yi Sun Ya-meng Sun Wen-qi Chen Nan Shi Fang Shen Yan Zhang Kang-yong Liu Xiao-jiang Sun 

机构地区:[1]Department of Neurology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University [2]Zhoupu Hospital

出  处:《Neural Regeneration Research》2015年第9期1433-1440,共8页中国神经再生研究(英文版)

基  金:supported by the National Natural Science Foundation of China,No.31171014,31371065;a grant from Shanghai Municipal Health Bureau,China,No.20134125;a grant from Shanghai Pudong District Health Bureau of China,No.PDZz2013-10

摘  要:Our previous findings have demonstrated that autophagy regulation can alleviate the decline of learning and memory by eliminating deposition of extracellular beta-amyloid peptide (Aβ) in the brain after stroke, but the exact mechanism is unclear. It is presumed that the regulation of beta-site APP-deaving enzyme 1 (BACE1), the rate-limiting enzyme in metabolism of Aβ, would be a key site. Neuro-2a/amyloid precursor protein 695 (APP695) cell models of cerebral isch- emia were established by oxygen-glucose deprivation to investigate the effects of Rapamycin (an autophagy inducer) or 3-methyladenine (an autophagy inhibitor) on the expression of BACE1. Either oxygen-glucose deprivation or Rapamycin down-regulated the expression of BACE1 while 3-methyladenine up-regulated BACE1 expression. These results confirm that oxygen-glucose deprivation down-regulates BACE1 expression in Neuro-2a/APP695 cells through the introduction of autophagy.Our previous findings have demonstrated that autophagy regulation can alleviate the decline of learning and memory by eliminating deposition of extracellular beta-amyloid peptide (Aβ) in the brain after stroke, but the exact mechanism is unclear. It is presumed that the regulation of beta-site APP-deaving enzyme 1 (BACE1), the rate-limiting enzyme in metabolism of Aβ, would be a key site. Neuro-2a/amyloid precursor protein 695 (APP695) cell models of cerebral isch- emia were established by oxygen-glucose deprivation to investigate the effects of Rapamycin (an autophagy inducer) or 3-methyladenine (an autophagy inhibitor) on the expression of BACE1. Either oxygen-glucose deprivation or Rapamycin down-regulated the expression of BACE1 while 3-methyladenine up-regulated BACE1 expression. These results confirm that oxygen-glucose deprivation down-regulates BACE1 expression in Neuro-2a/APP695 cells through the introduction of autophagy.

关 键 词:nerve regeneration brain lnjury oxygen-glucose deprivation cerebral ischemia stroke AUTOPHAGY beta-site APP-cleaving enzyme 1 (BACE1) beta-amyloid peptide 3-methyladenine (3-MA) RAPAMYCIN neural regeneration 

分 类 号:R741[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象