检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京农业大学理学院,江苏南京210095 [2]洛阳师范学院数学科学学院,河南洛阳471022
出 处:《应用数学》2015年第4期830-835,共6页Mathematica Applicata
基 金:Supported by the National Natural Science Foundation of China(11171158);the Fundamental Research Funds for the Central Universities(KYZ201538);the Natural Science Foundation of Jiangsu Province(BK201506051)
摘 要:本文研究一个偏微分方程组的平凡稳态解(0,0)的稳定性和分岔的问题,所研究的方程组是一个定义在有界区域(0,L)上有着Dirichlet边界条件的振幅方程.文中区间长度L被看成是一个分岔参数.文章考虑平凡稳态解(0,0)处的渐近行为,利用扰动理论的方法,获得非平凡解分岔结果,进一步地分析了非平凡分岔解的稳定性及其渐近行为.This paper focuses on the bifurcation and stability of the trivial solution (0,0) of a particular system of parabolic partial differential equations. The equation is as an amplitude equation on a bounded domain (0, L) with Dirichlet boundary conditions. In this paper, the asymptotic behavior of the stationary solution (0,0) of the amplitude equation is considered. With the length L of the domain considered as bifurcation parameter, branches of nontrivial solutions are shown by the perturbation method. Besides, in this paper, a study is made on local behavior of these branches. Moreover, the stability of the bifurcated solutions are analyzed as well.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33