一类具有Dirichlet边界条件的振幅方程的稳定性与分岔研究(英文)  

Stability and Bifurcation Analysis of an Amplitude Equation with Dirichlet Boundary Conditions

在线阅读下载全文

作  者:石磊[1] 刘乐[2] 

机构地区:[1]南京农业大学理学院,江苏南京210095 [2]洛阳师范学院数学科学学院,河南洛阳471022

出  处:《应用数学》2015年第4期830-835,共6页Mathematica Applicata

基  金:Supported by the National Natural Science Foundation of China(11171158);the Fundamental Research Funds for the Central Universities(KYZ201538);the Natural Science Foundation of Jiangsu Province(BK201506051)

摘  要:本文研究一个偏微分方程组的平凡稳态解(0,0)的稳定性和分岔的问题,所研究的方程组是一个定义在有界区域(0,L)上有着Dirichlet边界条件的振幅方程.文中区间长度L被看成是一个分岔参数.文章考虑平凡稳态解(0,0)处的渐近行为,利用扰动理论的方法,获得非平凡解分岔结果,进一步地分析了非平凡分岔解的稳定性及其渐近行为.This paper focuses on the bifurcation and stability of the trivial solution (0,0) of a particular system of parabolic partial differential equations. The equation is as an amplitude equation on a bounded domain (0, L) with Dirichlet boundary conditions. In this paper, the asymptotic behavior of the stationary solution (0,0) of the amplitude equation is considered. With the length L of the domain considered as bifurcation parameter, branches of nontrivial solutions are shown by the perturbation method. Besides, in this paper, a study is made on local behavior of these branches. Moreover, the stability of the bifurcated solutions are analyzed as well.

关 键 词:分岔 稳定性 振幅方程 特征值问题 

分 类 号:O193[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象