检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨师范大学数学科学学院,哈尔滨150009 [2]哈尔滨工业大学控制理论与制导技术研究中心,哈尔滨150001
出 处:《中国惯性技术学报》2015年第4期516-521,527,共7页Journal of Chinese Inertial Technology
基 金:国家自然科学基金(61174037);国家自然科学基金创新群体项目(61021002);上海航天科技创新基金项目(SAST201402);航空科学基金项目(20140177002)
摘 要:在有向通信拓扑下研究了导弹编队的鲁棒自适应协同跟踪控制问题。针对导弹编队系统中队形跟踪、外部扰动和模型不确定性的情况,通过选取包含位置跟踪误差和速度跟踪误差的辅助变量,提出了一种基于有向通信拓扑的鲁棒自适应编队控制策略。提出了自适应律对未知参数进行估计,并且利用Lyapunov稳定性理论分析了闭环系统的渐近稳定性。进一步,对于通信时滞的情况,给出了系统渐近稳定所需要满足的条件。与滑模控制等传统鲁棒控制不同,所设计的鲁棒自适应控制器是连续的,更便于导弹编队系统的实现。数值仿真结果表明,队形跟踪误差小于0.03 m,队形保持误差小于0.07 m,所设计的控制器能实现高精度的编队跟踪控制。The problem of robust adaptive cooperative tracking control of missile formation is investigated under directed communication topology. According to the formation tracking, external disturbance and model uncertainties in the system of missile formation, a robust adaptive formation control scheme with directed communication topology is proposed by selecting an auxiliary variable including position tracking error and velocity tracking error. The adaptive laws are presented to estimate the unknown parameters, and the asymptotical stability of closed-loop system is analyzed using Lyapunov stability theory. Furthermore, the conditions to satisfy the asymptotical stability of the system are given for the case of communication delays. Being different from traditional robust controls such as sliding mode control, the designed robust adaptive controller is continuous, so it is convenient to be implemented in the system of missile formation. Simulation results show that the tracking error and the keeping error of the formation are less than 0.03 m and 0.07 m, respectively, so the designed controller can achieve high-precision formation tracking control.
关 键 词:导弹编队 协同攻击 通信时滞 鲁棒自适应控制 有向图
分 类 号:V448.133[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.20