检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学水利水电学院,南京210098 [2]河海大学水文水资源与水利工程科学国家重点实验室,南京210098
出 处:《三峡大学学报(自然科学版)》2015年第5期5-8,共4页Journal of China Three Gorges University:Natural Sciences
基 金:国家自然科学基金项目(51279052);新世纪优秀人才支持计划资助(NCET-11-0628);高等学校博士学科点专项科研基金(20120094110005);中央高校基本科研业务费项目(2012B07214)
摘 要:针对传统BP神经网络自身存在局部极小值及模型的泛化能力差时预测精度无法满足实际需求等的不足,本文用AdaBoost算法优化传统的BP神经网络得到AdaBoost-BP预测模型,可以减小局部极小值的影响,增强了模型的泛化能力,提高模型的预测精度.示例证明,AdaBoost-BP预测模型比传统的BP神经网络预测模型拥有更高的预测精度.Aiming at the shortages of the traditional BP neural network,which itself exists local minima and the model prediction accuracy can not meet the actual demands when it has poor generalization ability,this paper uses AdaBoost algorithm optimization to optimize the traditional BP neural network prediction model and get the AdaBoost-BP prediction model.So the AdaBoost-BP model can reduce the effect of local minima,enhance the generalization ability and improve the prediction accuracy of the model.The case study shows that this model is more accurate than the traditional BP neural network model.
关 键 词:ADABOOST算法 BP神经网络 大坝变形预测
分 类 号:TV698.1[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229