客车侧翻评价指标的估计与灰色预测研究  被引量:6

Research on estimation and grey prediction of bus rollover evaluation index

在线阅读下载全文

作  者:张志勇[1,2] 谭涛[2] 刘鑫[2] 杜荣华[2] 

机构地区:[1]长沙理工大学工程车辆轻量化与可靠性技术湖南省高校重点实验室,湖南长沙410114 [2]长沙理工大学汽车与机械工程学院,湖南长沙410114

出  处:《中国安全科学学报》2015年第8期36-42,共7页China Safety Science Journal

基  金:国家自然科学基金资助(11272067);湖南省教育厅资助科研项目(15B008);工程车辆轻量化与可靠性技术湖南省高校重点实验室(长沙理工大学)开放基金资助(2012KFJJ09)

摘  要:为精确评价客车侧翻危险程度和补偿防侧翻控制系统的时滞,提出客车横向载荷转移率(LTR)在线估计和灰色预测方法。首先,根据车辆结构参数和车辆动力学理论建立3自由度客车侧翻动力学模型;然后建立客车LTR的估计模型,并基于Trucksim和Matlab/Simulink联合仿真模型,在J-Turn试验工况下分析估计模型的精度;最后,为补偿控制系统的时滞,利用灰色预测模型在线预测车辆LTR,同样基于联合仿真模型分析预测精度。分析结果表明,用估计模型能准确估计客车的LTR,相对误差在4.3%以内;用灰色预测模型能准确预测客车LTR,最大相对误差在5%左右,且建模维数和提前预测时间对预测精度有较大影响。To evaluate degree of the bus rollover risk and compensate time delay of the bus anti-rollover control system,a method was worked out for online estimation and prediction of LTR. A 3 degree-of-freedom vehicle rollover dynamic model was built according to the vehicle structure parameters and vehicle dynamics. Then,an estimation model was built for LTR,and co-simulation model based on Trucksim and Matlab / Simulink was used to analyze the estimation accuracy under J-Turn test conditions. Finally,in order to compensate the time delay of vehicle anti-rollover control system,the grey prediction model was introduced for vehicle LTR online predicting,and the co-simulation model is also used to analyze the predictive accuracy. The analysis results show that the estimation model can be used to accurately estimate the LTR,and the estimation error of the LTR estimation model is within 4. 3%,that the grey prediction model can be used to accurately predict the LTR,and maximum prediction error of grey prediction model is about5%,and that the number of model dimension and the prediction time have a great influence on the accuracy of prediction.

关 键 词:客车 侧翻 时滞 灰色预测 横向载荷转移率(LTR) 估计 

分 类 号:X913.4[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象