检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学信息与导航学院,西安710077
出 处:《电光与控制》2015年第11期23-26,41,共5页Electronics Optics & Control
基 金:陕西省自然科学基金(2011JM.8023)
摘 要:在多目标跟踪环境下,粒子概率假设密度(P-PHD)因杂波、漏检和非线性情况,导致滤波精度不高,跟踪发散,对此问题提出一种基于数值积分粒子概率假设密度滤波算法。利用数值粒子滤波(QPF)实现概率假设密度(PHD),用数值卡尔曼滤波(QKF)算法得到更好的重要性密度函数,并从中采样得到粒子,使粒子的分布更接近真实的概率假设密度分布。试验仿真表明,与粒子概率假设密度和容积粒子概率假设密度滤波算法相比,所提算法的滤波精度和稳定性明显提高。Under the circumstances of multi-target tracking, due to clutter, missed detection and no- linearity, the Particle Probability Hypothesis Density (P-PHD) algorithm will result in such problems as low filter accuracy and tracking divergence. To overcome these problems, aQuadrature Particle based PHD Filter (QPF-PHD) algorithm is proposed. The Quadrature Particle Filter (QPF) is used to realize PHD; the Quadrature Kalman Filter (QKF) algorithm is applied to generate a better importance density function, from which to sample particles, enabling the distribution of particles to be much closer to the real distribution of PHD. The simulation results demonstrate that:compared with particle PHD and Gizmo particle PHD filter algorithms, the proposed filter algorithm has higher filter accuracy and stability.
关 键 词:多目标跟踪 数值积分粒子滤波 概率假设密度滤波 随机有限集
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166