检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学,上海200093 [2]上海出版印刷高等专科学校,上海200093
出 处:《包装工程》2015年第21期133-136,141,共5页Packaging Engineering
摘 要:目的为了实现打印机的光谱预测,提出一种GA-BP神经网络结合子空间划分的预测模型。方法将打印机颜色空间划分成若干子空间,在子空间中运用GA-BP神经网络,对任意输入打印机的驱动值,根据其所在子空间实现光谱值的预测;采用主成分分析对光谱反射率进行降维,在简化了神经网络结构的同时,保持了对检测样本较高的识别精度。结果模型预测精度较未进行子空间划分时有了明显提高。结论提出的模型能够满足高精度打印机光谱预测的要求。A spectral prediction model of printer based on GA-BP neural network and subspace partition was proposed in this paper. Color space of printer was divided into subspaces and GA-BP neural network models were applied in subspaces. Spectral reflectance of any printer motivation values can be predicted by GA-BP neural network according to their own subspace. The principal component analysis was used for dimensionality reduction of spectral reflectance, which simplified the neural network structure and maintained the high identification accuracy for the test samples at the same time.Experimental results showed that prediction accuracy of the model improved obviously than the model without subspace partition, which can satisfy the requirement of high-precision spectral prediction of printer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3