检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪浩[1] 王海平[1] 吴信东[1,3] 刘琦[2]
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009 [2]同济大学生命科学与技术学院,上海200092 [3]佛蒙特大学计算机系,美国伯灵顿05405
出 处:《中国药理学通报》2015年第12期1770-1774,共5页Chinese Pharmacological Bulletin
基 金:国家自然科学基金资助项目(No 31100956,61173117);国家高技术研究发展计划(863计划)资助项目(No2012AA020405)
摘 要:目的药物重定位是指发掘已有药物新的治疗作用,然而具有潜在治疗作用的药物-疾病往往隐藏在数以百万计的关系对中。该研究基于医疗大数据分析,预测具有潜在治疗关系的药物-疾病关系对。方法将社交网络中推荐系统模型应用于药物重定位研究,并假设具有相似化学结构的药物可能具有相似的适应症。从开源数据库收集已知药物-疾病的治疗关系、副作用关系以及药物和疾病特征描述符,计算得到药物-药物的相似度和疾病-疾病相似度,再构建推荐模型将上述信息融合,并预测具有潜在治疗关系的药物-疾病,最终得到预测关系对的排序列表。结果列表排名前500的关系对中,有12.8%得到临床实验支持或综述报道,20%得到模式生物实验或细胞实验支持。结论相比于已有分类模型和随机抽样结果,本模型可明显提高具有潜在治疗作用药物-疾病的富集程度。Aim Drug repositioning is to find new indications for existing drugs,however,potential drug-disease relationships are often hidden in millions of unknown relationship. With the analyzing of medical big data,we predict the potential drug-disease relationships. Methods Based on the assumption that similar drugs tend to have similar indications,we applied a recommendation-based strategy to drug repositioning. First,we collected the information of known drug-disease therapeutic effect,side effect,drug characters and disease characters; second,we calculated the drug-drug similarity measurements and diseasedisease similarity measurements; last,we used a collaborative filtering( CF) method to predict unknown drug-disease relationships based on the known drug-disease relationships by integrating the similarity measurements,and built a ranking list of prediction results. Results The experiments demonstrated that among the TOP 500 of the list,12. 8% were supported by clinical experiments or review,and 20% were supported by model organism or cell experiments. Conclusion Compared to the classification model and random sampling results,the CF model can effectively reduce the false positives.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145