检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215000
出 处:《计算机科学与探索》2015年第12期1409-1419,共11页Journal of Frontiers of Computer Science and Technology
基 金:国家自然科学基金;苏州大学东吴学者计划~~
摘 要:在自然科学研究领域存在众多因连续变化而难以解决的问题。这些复杂问题可以通过谱方法表示为一系列离散空间上的简单问题的组合,通过求解这些简单问题获得其近似解。谱学习算法是近年来国际上机器学习领域的一个研究热点。谱学习算法建立在谱数学理论基础上,与传统的学习算法相比,一方面能保持数据内部潜在结构不变,另一方面能获得全局最优解。首先介绍了谱学习的基本理论,然后从谱聚类算法、概率模型谱学习算法、谱流形学习算法3个不同方面介绍了相关的典型算法,最后针对目前的研究现状,给出了谱学习几个有价值的研究方向。There are many problems in the fields of natural science which are difficult to be resolved due to continuous variation. These complex problems can be expressed as the combination of a series of simple problems which are distributed among the discrete spaces. The approximate solution of the complex problems can be obtained by solving the simple problems. In recent years, the spectral learning based on spectral mathematic theory is attracting more and more attention in machine learning. Compared with traditional learning methods, it can not only preserve the latent structure in the data, but also obtain a global optimization solution. This paper firstly introduces the basic theory of spectral learning, then shows some typical algorithms including spectral clustering, spectral learning of latent variable probabilistic model and spectral manifold learning, and finally presents some worthy perspectives according to the current researches.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15