检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安科技大学电气与控制工程学院,西安710054
出 处:《计算机测量与控制》2015年第12期4124-4127,共4页Computer Measurement &Control
摘 要:针对搬运机器人在障碍环境下的路径寻优问题,提出一种基于人工免疫改进的蚁群路径规划算法(AI-ACA);蚁群算法(ACA)的规划依赖于信息素挥发系数、期望启发因子和信息启发因子等参数的选取,传统ACA通过经验来设定这3个参数,但路径寻优中的最优参数因障碍环境而异;为解决经验参数对不同环境路径寻优结果的影响,引入人工免疫算法(AIA),对ACA的相关参数进行迭代优化,以此改善路径寻优结果;仿真结果及在自制机器人平台上测试表明,AI-ACA对于不同障碍环境可以准确地进行路径规划,在同样环境下较所参考的定参数蚁群路径规划效果有明显提升,提高了整个系统的运输效率。Aiming at the optimization path problem of handling robot in the obstacle environment, an novel ant colony algorithm for path planning based on artificial immune algorithm (AI--ACA) is presented. The planning result of ant colony algorithm (ACA) depends on the selection of key parameters, such as pheromone volatilization coefficients, expected arouse factor and information arouse factor. The parame- ters of traditional ACA are set through experience. But optimal parameter values of path optimization vary remarkably in different obstacle environments. To solve the effect of experiential parameters on the path planning results in different environments, artificial immune algo- rithm (AIA) is introduced, and the algorithm is used to achieve the iterative optimization of associated parameters of ant colony algorithm and then to improve path optimizing result of ant colony algorithm. Simulation results and test results on self--made robot platform show AI-- ACA can be used to effectively make path planning in different obstacle environments. AI--ACA is superior to invariable parameter ant colo ny path planning referred in the same environment and can raise transportation efficiency of the whole system.
关 键 词:搬运机器人 路径规划 参数寻优 蚁群算法 人工免疫算法
分 类 号:TP249[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15