检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《宁波大学学报(理工版)》2016年第1期59-63,共5页Journal of Ningbo University:Natural Science and Engineering Edition
基 金:国家自然科学基金(11101230;11371209);浙江省自然科学基金(LY13A010013);宁波大学学科项目(XKL11D2051)
摘 要:SPS(Scalar Projection Scale)参数化有理Bézier曲线在几何造型中有重要应用.为研究其几何性质,首先分析了当SPS参数化有理Bézier曲线退化为Bézier曲线时,其所具有的几何性质;其次证明了SPS参数化有理Bézier曲线升阶后仍为SPS参数化;最后在求导的基础上利用笛卡尔符号法则分析SPS参数化二次有理Bézier曲线曲率的单调性,并得到了其曲率分布的规律.Rational Bézier curves with SPS(scalar projection scale) parameterization are useful in geometric molding. In order to study their geometric properties, the following three steps are carried out. In the first step, we note that, when a rational Bézier curve degenerates into Bézier curve, it will present an intuitive geometric character. In the second step, we demonstrate that a rational Bézier curve with SPS parameterization is still SPS parameterized after degree elevation. Finally, by Descartes' rule of signs, the monotonicity of curvature is discussed for a rational quadratic Bézier curve parameterized by SPS in a bid to obtain the curvature distribution.
关 键 词:有理BÉZIER曲线 SPS参数化 升阶 曲率
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15