检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国图象图形学报》2016年第1期122-128,共7页Journal of Image and Graphics
摘 要:目的作为计算机视觉的热门研究方向,局部不变特征算法的发展已趋于成熟、稳定,然而目前几乎所有特征点提取算法都没有给出特征点的精度指标。针对这一缺陷,提出一种特征点精度指标——特征点波动区间。方法性质稳定的点在干扰条件下仍具有较好的精度,即小范围的波动区间,因此,以当前最热门的SIFT(scaleinvariant feature transform)特征点为例,在图像加入噪声,发生光照变换,发生模糊变换以及同时进行噪声、光照及模糊处理这四种情况下分别分析同一算法提取的不同特征点的波动情况,进而得到不同特征点的波动区间。结果实验得到16个稳定检出特征点,其中点2,3,4,11,13这5个点可以在不同干扰条件下的波动范围都较小,而点2则只在模糊条件下波动较小,在其余干扰下波动较大。特征点虽然已经过特征提取,但仍具有不同的波动区间,其优劣也不尽相同。不同的特征点的波动区间并不相同,但仍有一部分特征点在不同干扰条件下均保持较高的提取精度。结论波动区间能很好地表征每个特征点的提取精度。由于此前只有针对特征点算法的评价指标,而没有针对特征点自身性质的评价方法,因此本文提出的特征点波动区间将为诸如设备标定、视觉测量、精简特征库等相关后续工作打下良好基础。Objective As a popular research direction in computer vision, the development of local invariant feature algo- rithms has become more and more mature and stable. But now, almost all the feature point extraction algorithms cannot give the accuracy index of feature points. In fact, the precision of feature points' position is requested in many areas, such as device calibration and visual inspection. To solve this problem, this paper proposed a feature point precision index-feature point's range. Since there are always disturbances in the process of acquiring images, it is difficult to obtain absolutely perfect images and feature points. This paper defines the feature point' s range as the range of a feature point' s fluctuation in different conditions which is stable in different disturbances. Method This paper choses the most popular algorithms of local invariant feature named SIFT (Scale-invariant feature transform) as an example. To make the result more intuitive and clear, the experiment selects those pictures whose backgrounds are simple and objectives are clear. This paper analy- ses the fluctuation of feature points in noise conditions, fuzzy conditions , light transform conditions and all those disturb- ances which are the common interferences in actual operations to achieve the fluctuation range of different feature points. First, this paper establishes the experimental galleries. We make not only a noise gallery, light treatment gallery and fuzzydiagram gallery but also a gallery which contains the three disturbances. It is worth noting that considering the randomness of noise, we generate 100 pictures for one noise intensity. Secondly, the stable feature points which can be detected in all disturbances are found by matching. We get 16 points in this experiment which has its own point cloud. Once more, be- cause different points fluctuate differently in different situations, we use a circle to fit every point' s fluctuation in different conditions. It means we use a circle to fit every point
关 键 词:计算机视觉 局部不变特征 特征点 波动区间 尺度不变特征转换(SIFT)
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145