检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中原工学院,郑州450007
出 处:《中原工学院学报》2015年第6期1-5,44,共6页Journal of Zhongyuan University of Technology
基 金:国家自然科学基金项目(61202499;61379113);河南省基础与前沿技术研究项目(142300410042);郑州市科技领军人才项目(131PLJRC643)
摘 要:提出了一种基于L0范数视觉显著性的织物疵点检测算法。首先将测试图像分块,针对每一个测试图像块,用随机选择的K个其他图像块与该图像块变异构建字典库,并利用该字典库对测试图像块进行稀疏表示。然后采用L0范数优化方法来求解稀疏系数,将变异图像块对应的稀疏系数作为该图像块的显著度,从而生成最终视觉显著度图。最后通过迭代最优阈值分割算法定位出疵点区域。该算法相对已有方法能更有效地检测出疵点区域。This paper proposes a novel fabric defect detection algorithm using sparse representation-based visual saliency. In the proposed scheme, an input image is first divided into blocks, then each image block is represented based on a dictionary constructed using some randomly selected blocks and the dithered test block, using L0-rninimization solves the equation to obtain weights. Based on the corresponding weight value of dithered test block, a saliency map is produced. Finally, saliency map is segmented by using an optimal threshold, which is obtained by an iterative approach. Experimental results demonstrate that generated saliency map using our proposed method outperforms state-of-the art, and the defect can be efficiently localized by the optimum threshold segmentation.
关 键 词:L0范数 视觉显著性 稀疏表示 织物图像 疵点检测
分 类 号:TG142.1[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28