检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]招商局重庆交通科研设计院有限公司桥梁工程结构动力学国家重点实验室,重庆400067
出 处:《地震工程学报》2015年第4期933-937,共5页China Earthquake Engineering Journal
基 金:交通运输部应用基础研究项目(2013319740080;2014319740160);交通运输部信息化技术研究项目(2013364740600);重庆市科技人才培养计划项目(cstc2013kjrc-qnrc30001)
摘 要:对传统的结构抗震闭开环控制算法进行改进。基于地面运动自回归模型,采用Kalman滤波利用可以量测到的地面加速度激励对未来时段即将发生的地面加速度激励进行预估,并在微分方程的求解中引入精确高效的精细积分算法。考虑到实际控制中量测全部状态变量的困难,改进算法仅需量测部分状态变量。数值仿真表明,基于输出反馈的闭开环次优控制策略能大大降低结构的地震响应。Most recent studies have been based on the application of linear quadratic regulator control to earthquake-excited structures.In linear quadratic regulator control problems,the objective function is defined as the integral of a quadratic expression in the control interval with respect to structural states and control vectors,and the optimal regulator can be derived using Pontryagin's maximum principle or Bellman's method of dynamic programming.In traditional linear quadratic regulator control problems,the Riccati equation is obtained without considering the earthquake excitation term.To optimize control and satisfy the optimality condition,in this study,we propose a new closed/open-loop control strategy for structures under earthquake excitation.We derive an analytical solution to a linear regulator problem for structural control without neglecting unknown disturbances.The optimal regulator depends on both the state and disturbances.The solution for this closed/open-loop control requires the knowledge of the earthquake in the control interval,which is approximated based on the real-time prediction of near-future earthquake excitation using the Kalman filtering technique.Earthquake excitation is modeled as an autoregressive process.The prediction algorithm can predict seismic excitation in the near future with high accuracy,although it lacks prediction accuracy for more distant future events.Considering the measurement difficulty of all state variables,especially for some high-order systems,the proposed control strategy only requires the measurement of a partial state.In the calculation of a state transition matrix,which is required to solve a differential equation,large rounding errors may occur when the time-step size is excessively small.To overcome this limitation,we introduce a precise integration algorithm to solve the differential equation.This algorithm is always numerically stable and yields very high precision solutions for numerical integration problems.To demonstrate the effectiveness of the propos
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147