基于圆弧扫描线的手势特征提取和实时手势识别  被引量:7

Gesture Feature Extraction and Recognition Based on Circular Scan Lines

在线阅读下载全文

作  者:刘砚秋[1] 王修晖[1] 

机构地区:[1]中国计量学院信息工程学院,杭州310018

出  处:《数据采集与处理》2016年第1期184-189,共6页Journal of Data Acquisition and Processing

基  金:国家自然科学基金(61303146)资助项目

摘  要:基于手势的人机交互是当前备受关注的自然人机交互模式之一,实时手势识别是其中最重要的步骤。本文提出了一种基于圆弧扫描线的手势特征提取和实时手势识别方法。首先,基于一种抽象描述手掌和五指关系的简洁人手海龟模型,结合肤色特征和腕部标记分割出人手部图像,并进行二值化处理和统一尺寸来建立手势训练集。然后,以手掌中心为圆心构造同心圆来提取训练集中不同手势样本的特征,并使用线性判别分析(Linear discriminant analysis,LDA)算法对手势特征向量进行离线预处理。最后,使用改进的加权K近邻(Weighted-K-nearest neighbor,W-KNN)算法进行实时手势分类和识别。为了验证本文方法的有效性,在自建小型手势数据库上进行了算法分析和比较,并在多投影系统下进行实时交互测试。实验结果表明本文算法具有较高的识别效率。Human computer interaction based on hand gesture is one of the most popular natural interactive modes, which severely depends on the methods for real-time gesture recognition. Here, an effective hand feature extraction method is described, and the corresponding hand gesture recognition method is proposed. First, based on a simple tortoise model, one segments the human hand images by skin color features and tags on the wrist, and normalizes them to create the train set. Then feature vectors are computed by drawing concentric circles according to the center of the palm, and linear discriminant analysis (LDA) algorithm is used to deal with those vectors. Finally, an improved K-nearest neighbor (KNN) algorithm is presented to achieve real-time hand gesture classification and recognition. Experimental results with a self-defined hand gesture data set and multi-projector display systems prove the efficiency of the new approach.

关 键 词:人手模型 手势识别 线性判别分析 人机交互 K近邻法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象