检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学学报(中文版)》2016年第2期151-162,共12页Acta Mathematica Sinica:Chinese Series
基 金:中央高校基本科研基金资助项目(20720150006);福建省自然科学基金资助项目(2011J01021)
摘 要:通过构造一个Riemann Zeta函数ζ(k)的部分和ζ_n(k)的幂级数函数,利用牛顿二项式展开及柯西乘积公式可以计算出一些重要的和式.再将该幂级数函数由一元推广到二元甚至多元,由此得到Riemann Zeta函数的高次方和式之间的关系.并利用对数函数与第一类Stirling数之间的关系式及ζ(k)函数满足的相关等式,可得出Riemann Zeta函数的18个七阶和式,以及其它一些高次方的和式.In this paper, by constructing a partial sum of ζ(k) on the Riemann Zeta function, using the ζn(k) power series function, Binomial expression and Cauchy prod- uct formula, some important sums are calculated. By extending the power series func- tion from one variable to multivariate, some relationships of high order sums on Rie- mann Zeta function are established. By using the relationship between the logarithmic function and Stirling numbers of the first kind, and some other related equations, 18 seven-order sums of Riemann Zeta function and some other high order sums are ob- tained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15