检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家数字交换系统工程技术研究中心,河南郑州450002
出 处:《北京理工大学学报》2016年第1期70-74,共5页Transactions of Beijing Institute of Technology
基 金:国家"九七三"计划项目(2012CB315901);国家"八六三"计划项目(2011AA01A103);国家自然科学基金资助项目(61309020)
摘 要:持续指数增长的互联网逐渐带来了信息过载问题,使得推荐系统提供的信息过滤服务尤为重要.协同过滤是推荐系统领域最为成功的技术,但依然存在数据稀疏性等问题.社会关系信息能够有效提高推荐系统的预测准确性.为解决数据稀疏性问题,本文提出了一种利用Logistic函数的社会化矩阵分解推荐算法.在3组真实数据结合上的实验结果表明,本文提出的算法能够提供更准确的推荐结果,特别是在数据稀疏的情况下,显著缓解了数据稀疏性问题.The ongoing exponential growth of the Internet brings an information overload, which greatly increases the necessity of effective recommender systems for information filtering. However, collaborative filtering, which is recognized as the most successful technique in designing recommender systems, still encounters the data sparsity problem. Social relations have been found to be effective to improve the prediction accuracy of recommender systems. In order to handle the data sparsity problem, this paper proposed a new social matrix faetorization recommender algorithm by leveraging the Logistic function. Experimental results on three real- world datasets illustrate that the proposed method provides more accurate recommendation results, especially under sparse conditions.
关 键 词:推荐系统 协同过滤 矩阵分解 社会关系 Logistic函数
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147