基于ANFIS模型的Pr/Nd萃取过程预测控制  被引量:12

ANFIS model-based predictive control for Pr/Nd cascade extraction process

在线阅读下载全文

作  者:杨辉[1,2] 朱凡[1,2] 陆荣秀[1,2] 张志勇 

机构地区:[1]华东交通大学电气与电子工程学院,江西南昌330013 [2]江西省先进控制与优化重点实验室,江西南昌330013

出  处:《化工学报》2016年第3期982-990,共9页CIESC Journal

基  金:国家自然科学基金项目(51174091;61364013;61563015);国家重点基础研究发展计划前期研究专项(2014CB360502)~~

摘  要:针对稀土萃取过程自动化程度低、经验控制误差大、手动调节效率不高的问题,建立了萃取过程ANFIS模型,实现了各控制流量的自动调节。考虑稀土萃取过程非线性和动态特性,采用自适应神经模糊推理系统(ANFIS)对Pr/Nd萃取过程进行描述,在保证高精度的组分含量预测输出基础上,运用广义预测控制方法(GPC)实现各控制流量的优化控制;最后,基于Pr/Nd萃取过程动态数据进行仿真实验。通过与传统PID方法的实验对比,表明了本文方法的有效性。Rare earth (RE) is a national major strategic resource, but there are some problems existed in the RE cascade extraction industry, such as poor levels of automation, large control error and low efficiency of manual adjustment. In this paper a non-linear generalized predictive control (GPC) method based on adaptive neural fuzzy inference system (ANFIS) is proposed to counter these problems. First, in consideration of the nonlinearity and dynamic characteristic of the extraction process, the ANFIS algorithm is employed to describe the process. Then, on the premise of high-precision of component content prediction, the GPC method is exploited to adjust the flows accurately and automatically. Finally, simulation experiments are carried out based on the dynamic data of Pr/Nd cascade extraction process. By the contrast with the conventional PID method, it is validated that the proposed approach is effective.

关 键 词:萃取 非线性 ANFIS 模型 预测控制 

分 类 号:TQ028.8[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象