检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学自动化学院,南京211106
出 处:《应用科学学报》2016年第2期190-202,共13页Journal of Applied Sciences
基 金:国家自然科学基金(No.91016017)资助
摘 要:针对四旋翼无人机定点悬停控制,从应用层面提出了多传感器数据融合方案,设计了相应的协同控制算法.在飞行器整体硬件架构基础上分析量测系统的各个传感器,对于姿态测量通道提出卡尔曼滤波算法,对于高度测量通道提出互补滤波算法,对于水平位置测量通道提出双传感器融合算法.基于四旋翼无人机的状态空间及其小扰动线性化模型,设计了与之相结合的协同控制算法并进行仿真.最后在物理平台上对设计的算法进行验证,表明多传感器融合与协同控制相结合的方法能有效提高四旋翼无人机的定点悬停精度.To deal with hovering control of four-rotor UAV from a practical point of view,a scheme of multi-sensor data fusion and a corresponding law of cooperative control are proposed. Based on the overall hardware frame of the aircraft, and within-depth analysis of each sensor in the measurement system, a Kalman filtering algorithm is developed for attitude measurement and a complementary filtering algorithm developed for height measurement. A dual sensor fusion algorithm is proposed to measure horizontal position.A four-rotor UAV model is established using small perturbation linearization. Based on the model, a corresponding cooperative control algorithm is designed. Simulation is performed to test the practicability. All algorithms are applied to a physical platform to verify effectiveness. The results show that the multi-sensor fusion algorithm combined with a coordination controller is reliable and effective. It can effectively improve accuracy of fixed-point hovering of four-rotor UAVs.
关 键 词:四旋翼无人机 数据融合 卡尔曼滤波 互补滤波 协同控制
分 类 号:V249.1[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175