检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454000
出 处:《自动化仪表》2016年第4期42-46,共5页Process Automation Instrumentation
摘 要:液压钻机故障特征参数与故障状态之间呈现较强的非线性,依赖线性数学模型的故障诊断方法诊断正确率不高。针对上述问题,提出了一种基于粒子群算法(PSO)优化BP神经网络的液压钻机故障诊断方法。该方法利用BP神经网络提取特征参数之间的非线性关系,实现典型故障的分类识别;利用PSO优化BP神经网络的权值和阈值,提高网络训练的收敛速度。仿真结果表明,PSO优化的BP神经网络迭代次数少,收敛速度快。该方法能够对测试样本进行有效分类,故障诊断正确率高。Because of the strong nonlinearity between fault feature parameters and iault status of hydraulic drilling rig, the daagnostic accuracy of the fault diagnosis method which relies on linear mathematical model is not high. To solve this problem, a fault diagnosis method based on BP neural network optimized by Particle Swarm Optimization ( PSO } is proposed. With this method, the nonlinear relationship between the feature parameters is extracted by using BP neural network for realizing classification recognition of the typical faults ; and the weights and thresholds of BP neural network are optimized by adopting PSO for increasing the convergence rate of network training. The result of simulation reveals that the BP neural network optimized by PSO features smaller number of iterations and faster convergence rate; the diagnosis method can classify the testing samples effectively, and the accuracy of fault diagnosis is high.
关 键 词:液压钻机 故障诊断 BP神经网络 粒子群算法 全局优化 可靠性 数据分析
分 类 号:TH6[机械工程—机械制造及自动化] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.197.130