聚类分析结合BP神经网络的钢坯库堆垛问题算法  

An algorithm for storage of steel billet based on BP neural network

在线阅读下载全文

作  者:李鸿宇[1] 胡宇[1] 李枢 宋向荣[1] 

机构地区:[1]冶金自动化研究设计院,北京100071 [2]总后油料研究所,北京100072

出  处:《辽宁科技大学学报》2016年第1期31-37,51,共8页Journal of University of Science and Technology Liaoning

基  金:科技部青年科学基金(51304053)

摘  要:在考虑了钢坯库实际堆垛的基础上,设计了一种将订单K-means聚类分析后通过BP神经网络生成入库计划的算法。该算法主要分为2个阶段,首先通过K-means聚类将轧制计划中的合同按照轧制出厂日期等条件形成类别;然后通过BP神经网络算法生成入库计划。利用钢厂实际生产数据对本算法进行验证。结果表明,本算法能够有效地减少倒垛次数,提高垛位空间利用率。Considering the actual stacking of the steel billet,a algorithm was designed for the storage of the steel billet,which was based on the K-means clustering analysis and BP neural network to make the storage plan of raw steel. The algorithm was mainly divided into two stages. First,the order of the rolling steel was recombining by K-means clustering based on the stacking date and other factors;second,the BP neural network was supposed to generate the storage plan of the steel billet. Finally the algorithm was validated by the actual production data of the steel plant. The results show that the algorithm can effectively reduce the number of billet stacking and improve the stack space utilization.

关 键 词:K-MEANS聚类 BP神经网络 钢坯倒垛 订单重组 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象