检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学自动化系控制与信息处理教育部重点实验室,上海200240
出 处:《高技术通讯》2016年第1期81-88,共8页Chinese High Technology Letters
基 金:973计划(2012CB719903);国家自然科学基金委创新研究群体(X198144);国家自然科学基金青年科学基金(41101386);国家自然科学基金(41071256)资助项目
摘 要:研究了基于层次形状特征提取的图像分类。针对从初级视觉皮层(V1)提取的条形特征对目标形状的描述不充分,提出了一种层次模型(V1-V2-V4),以进一步提取角形、曲率特征。模型中V1层的条形特征提取采用Gabor模拟;V2层结合了抑制噪声的3D高斯差分(DOG),并使用滤波方向相差90度的Gabor滤波器组提取多尺度角形特征;V4层通过曲率域计算来描述目标轮廓的形变程度,并最终提取融合曲率与梯度方向的直方图特征。该模型的优势在于,通过角形以及曲率计算的层次表达,可有效增强目标形状的关键特征点(如角点位置)的提取,并且结合曲率与梯度的直方图描述,也可有效弥补单一曲率或梯度特征局部描述不足的问题。在MNIST手写数字与21类遥感影像上的实验表明,曲率与梯度的融合特征的运用可获得98.94%的数字识别精度,同时在遥感影像分类中也可获得较好的分类效果。The image classification based on hierarchical shape feature extraction was studied. Considering that the bar features extracted from the primary visual cortex of V1 can not sufficiently represent the shape of an object, a new hierarchical model of V1-V2-V4 was presented to further extract the features of angle and curvature. Under the model, the Gabor function is adopted to simulate V1 to extract the bar features, the noisy inhibition using 3D-DOG (difference of Gaussian) combined with a group of Gabor filters with the filtering direction difference of 90~, is in- troduced to extract the multi-scale angle features in V2, and in V4, the deformation of the shape of an object is de- scribed through the computation of the curvature field, to finally extract the histogram features fusing the curvature and gradient orientation. The advantage of the proposed model is that the hierarchical representation based on the computation of angle and curvature helps to extract the key points of object shape such as the comers. Moreover, the use of fusion features also remedies the inadequacy of the object description only using curvature or gradient fea- ture.. The experiments on MNIST handwritten digits and 21 remote sensing images demonstrated that the use of the features fusing curvature and gradient orientation achieved the digit recognition accuracy of 98.94%, and obtained the better result in classification of remote sensing images.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3