基于GPU图像去噪总变分对偶模型的并行计算  被引量:2

Parallel computation for image denoising via total variation dual model on GPU

在线阅读下载全文

作  者:赵明超[1] 陈智斌[1] 文有为[1] 

机构地区:[1]昆明理工大学理学院,昆明650500

出  处:《计算机应用》2016年第5期1228-1231,共4页journal of Computer Applications

基  金:国家自然科学基金资助项目(11361030)~~

摘  要:研究基于总变分(TV)的图像去噪问题,针对中央处理器(CPU)计算速度较慢的问题,提出了在图像处理器(GPU)上并行计算的方法。考虑总变分最小问题的对偶模型,建立原始变量与对偶变量的关系,采用梯度投影算法求解对偶变量。数值实验分别在GPU与CPU上进行。实验结果表明,总变分去噪模型对偶算法在GPU设备上执行的效率高于在CPU上执行的效率,并且随着图像尺寸的增大,GPU并行计算的优势更加突出。The problem of Total Variation( TV)-based image denoising was considered. Since the traditional serial computation speed based on Central Processing Unit( CPU) was low,a parallel computation based on Graphics Processing Unit( GPU) was proposed. The dual model of the total variation-based image denoising was derived and the relationship between the primal variable and the dual variable was considered. The projected gradient method was applied to solve the dual model. Numerical results obtained by CPU and GPU show that the algorithm implemented by GPU is more efficient than that by CPU,and with the increasing of image size,the advantage of GPU parallel computing is more outstanding.

关 键 词:并行计算 总变分 图像去噪 图像处理器 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象