极坐标下薄板弯曲问题的重心有理插值法  

Barycentric rational interpolation collocation method for bending problem of a thin plate in polar coordinates

在线阅读下载全文

作  者:庄美玲[1] 王兆清[1] 张磊[1] 纪思源 

机构地区:[1]山东建筑大学力学研究所,山东济南250101

出  处:《山东科学》2016年第2期82-87,共6页Shandong Science

基  金:国家自然科学基金(51379113)

摘  要:利用重心有理插值配点法(BRICM)研究了极坐标下薄板的弯曲问题,该方法是以重心有理插值近似未知函数强迫微分方程在离散节点处成立,得到微分方程的离散代数方程组,进而采用重心有理插值的微分矩阵将离散代数方程组表达为矩阵的形式。利用置换法施加边界条件,求解微分方程组。数值算例结果表明,该方法在解决极坐标下薄板弯曲问题上公式简单,程序实施方便且计算精度高。We apply barycentric rational interpolation collocation method (BRICM) to the bending problem of a thin plate in polar coordinates. It approximates an unknown function with barycentric rational interpolation by compelling a biharmonic equation to equal to the unknown function at discrete nodes, and acquires the discrete algebraic equations of the biharmonic equation. It further denotes the discrete algebraic equations as a matrix by the differential matrix of barycentric rational interpolation. It eventually solves the differential equations with a boundary conditions mixed replacement method. Numerical instances demonstrate that the method has simple calculation formulae for bending problem of a thin plate in polar coordinates, convenient program and high calculation precision.

关 键 词:极坐标 弯曲问题 重心有理插值 双调和方程 边界值 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象