检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院东北地理与农业生态研究所,吉林长春130102 [2]中国科学院大学,北京100049
出 处:《遥感技术与应用》2016年第2期275-284,共10页Remote Sensing Technology and Application
基 金:国家重大专项(21-Y30B05-9001-13/15-2);国家自然科学基金项目(41271196;41301465)
摘 要:由于传统蚁群算法搜索空间大,算法时间复杂度高等,导致基于传统蚁群算法的高光谱数据波段选择算法(ACA-BS)耗时长,算法效率低下,且易陷入局部最优。而多态蚁群算法能大大缩小算法的搜索空间,降低算法时间复杂度。因此,研究设计了基于多态蚁群算法的高光谱数据波段选择算法(PACA-BS)。从算法运行时间、波段子集的类别可分性及信息量、总体分类精度等方面对算法进行对比分析。用于实验的数据为Hyperion和AVIRIS高光谱影像。实验结果表明:PACA-BS的运行时间较ACA-BS大大减少;对Hyperion影像进行降维时,基于PACA-BS的运行时间约为ACA-BS的一半。两种算法获得的波段子集的类别可分性大小较为接近,但PACA-BS获得的波段子集的信息量和总体分类精度优于ACA-BS。研究表明PACA-BS是一种效率较高的高光谱波段选择算法。Due to the large searching space,the time complexity of traditional Ant Colony Algorithm (ACA) is very high.Thus, the ACA-based band selection algorithms require a long time to run,and always suffer from local opti- ma.In comparison,the Polymorphic Ant Colony Algorithm (PACA) can significantly decrease the search- ing space and thus the time complexity.In considerations of this, this paper designed a PACA-based band selection algorithm (PACA-BS) for hyperspectral remote sensing imagery.Performance evaluation of algo- rithms was focused on the following aspects:computing time, separability of band sets, information amount and overall accuracy. Herein, Hyperion and AVRIS imagery were employed as data source. The results showed that the computing time of PACA-BS was markedly lower than ACA BS.Furthermore, band sets derived by both algorithms possess similar separability, however, the band sets of PACA-BS have larger in- formation amount,and thus generate a higher overall classification accuracy.The PACA-BS is thus proved to be a promising and optimized method for band selection of hyperspectral image.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.57.238