复杂光照环境下的车辆检测方法  被引量:4

Vehicle Detection Method in Complex Illumination Environment

在线阅读下载全文

作  者:裴明涛[1] 沈家峻 杨敏[1] 贾云得[1] 

机构地区:[1]北京理工大学计算机学院,智能信息技术北京市重点实验室,北京100081

出  处:《北京理工大学学报》2016年第4期393-398,共6页Transactions of Beijing Institute of Technology

基  金:国家自然科学基金资助项目(61472038);北京市教育委员会共建专项资助项目

摘  要:提出一种用于复杂光照环境下的车辆检测方法,该方法在传统的假设验证框架下充分利用了先验知识和复杂光照背景下的车辆特征.在假设生成阶段,利用车辆边缘信息与车辆前部形状特征进行拟合来生成假设;在假设验证阶段,使用HOG特征作为描述子,结合SVM分类器完成假设车辆目标的验证识别.实验结果表明在复杂的光照环境中,本文方法能够有效检测出传统方法无法检测的目标,是对正常光照环境下车辆检测方法的有效补充.An on-road vehicle detection method under complex illumination environments was introduced. The approach uses the features of a vehicle under complex illumination environment and prior knowledge of the vehicle's front shape based on the hypothesis-verification framework. During the stage of hypothesis generation, edges were extracted from the front image of a vehicle and then fit approximately with the front shape of the vehicle. In the hypothesis verification phase, HOG features were used as a descriptor, in combination with the SVM classifier to complete the verification of hypothesis. The experimental results show that the proposed method works well in complex illumination environment, and it has good performance in detecting vehicle targets under complex illumination environment.

关 键 词:车辆检测 假设验证框架 复杂光照 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象