检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学信息与软件工程学院,成都611731
出 处:《电子科技大学学报》2016年第3期399-404,共6页Journal of University of Electronic Science and Technology of China
基 金:国家科技支撑计划(2012BAH44F00)
摘 要:为降低室内环境复杂性对WiFi指纹定位的影响,提出将支持向量机(SVM)分类与回归分析相结合的WiFi指纹定位算法,以提高定位精度。在基于智能手持设备惯性传感器的行走航位推算(PDR)中,为降低惯性传感器的误差及定位误差的累积,通过状态转换的方法识别行走周期并进行计步,提出对原始加速度数据进行预处理和根据实时加速度数据动态设置状态转换参数的算法。在改进的WiFi定位算法及PDR算法基础上,提出使用联邦卡尔曼滤波融合两种方法,并根据人体运动学确定各级滤波器的状态方程和量测方程。实验证明了该算法的有效性。To reduce the negative influence of the complex indoor environment on WiFi fingerprinting, the paper proposes a support vector machines (SVM)-based WiFi fingerprinting algorithm which combines SVM classification and regression for more accurate location estimation. For smartphone based pedestrian dead reckoning (PDR), the paper detects the steps by recognizing the state transitions during human walking using real-time acceleration data. To reduce the measurement noise and the accumulation of positioning errors, the paper proposes a pre-processing algorithm on the original acceleration data and determines the state transition parameters dynamically according to the real time acceleration data. Based on the SVM-based WiFi fingerprinting and the enhanced PDR, the paper uses Kalman filtering to fuse them for more accurate and more stable positioning results. Experiments show that the proposed algorithms are quite effective.
关 键 词:卡尔曼滤波 惯性传感器 多传感器融合 行走航位推算 定位 wiR指纹
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.238.90