检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中北大学学报(自然科学版)》2016年第2期120-125,共6页Journal of North University of China(Natural Science Edition)
基 金:国家自然科学基金资助项目(11301491);山西省自然科学基金资助项目(2015011009)
摘 要:建立和研究了一类具有接种疫苗和再次感染的媒介传染病模型.假设易感者接种疫苗后还被感染,得到了疾病流行与否的阈值,即基本再生数R0,并讨论了平衡点的存在性.进一步运用Lyapunov函数及Routh-Hurwitz判据证明了无病平衡点和地方病平衡点的全局稳定性.最后根据实际情况选取适当数据,进行数值模拟,验证了所得结论的正确性.The epidemic model with vaccination and re-infection is formulated and analysed.It is assumed that the susceptible individuals are infected after being vaccinated,the basic reproduction number R0 which determines the outcome of disease is identified and the existence of the equilibrium is discussed.Further application of Lyapunov function and Routh-Hurwitz criterion are used to prove that disease free equilibrium and endemic equilibrium is global stability.Then a series of numerical simulations are presented to illustrate the mathematical findings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28