检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王佳佳[1,2] 高发荣[1] 孙曜[1] 罗志增[1]
机构地区:[1]杭州电子科技大学智能控制与机器人研究所,杭州310018 [2]浙江大华技术股份有限公司,杭州310053
出 处:《传感技术学报》2016年第3期384-389,共6页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金项目(61372023;61172134);浙江省自然科学基金项目(LQ13F010014;Y1101230)
摘 要:人体生理特性和运动特性是影响步态识别的重要因素。利用实验采集的下肢表面肌电信号,首先对肌电信号进行小波消噪及特征提取,然后构造支持向量机分类器进行分类与识别,并针对步态周期数据的非均匀性(非等时性)特性进行了详细讨论。结果表明,即使在匀速行走条件下,人体步态周期仍然存在一定的非均匀特性,且这一特点会影响步态识别的准确性。这对于进一步研究步态稳定性和步态识别率等具有一定的参考价值。The characteristics of the human physiology and motion are the important factors affecting the gait recognition. By means of the experimental data from the lower limb motion, firstly the surface electromyography (sEMG) was de-noised by the wavelet method and the feature samples were extracted, subsequently the classification and recognition were implemented by constructing the support vector machine (SVM)classifier, and the non-uniform(anisochronism) characteristics of the gait cycle were discussed in detail. The results show that even in a uniform walking condition, there still exit some non-uniform characteristics in the human gait cycle, which can affect the accuracy of the gait recognition. The work has a valuable reference to further study the gait stability and recognition rate.
分 类 号:TP391[自动化与计算机技术—计算机应用技术] TP24[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249