非线性等式与有界约束优化问题的正割算法及其收敛性分析  

Convergence of the Secant Algorithm for Nonlinear Equality and Box-Constrained Optimization

在线阅读下载全文

作  者:顾超[1] 朱德通[2] 

机构地区:[1]上海立信会计学院数学与信息学院 [2]上海师范大学数学系

出  处:《数学年刊(A辑)》2016年第2期191-210,共20页Chinese Annals of Mathematics

基  金:国家自然科学基金(No.11201304;No.11371253);上海市教育委员会科研创新项目的资助

摘  要:提出了结合仿射尺度技术的正割算法解非线性等式与有界约束优化问题.在合理假设下,证明了渐弱滤子线搜索方法可以保证新算法具有整体收敛性.通过引入一个高阶修正方向,克服Maratos效应的影响,使得算法二步q-超线性收敛于最优点.进一步地,对算法进行修改,使得新算法达到q-超线性收敛性.The authors propose a new secant algorithm with the affine scaling technique for nonlinear equality and box-constrained optimization.The new algorithm with the line search dwindling filter method yields the global convergence under some reasonable conditions.A high-order modified direction is introduced in order to prevent the Maratos effect so that the algorithm converges locally two-step g-superlinearly.Furthermore,with some modifications,the convergence rate of the new approach is q-superlinear.

关 键 词:正割算法 仿射尺度技术 线搜索 渐弱滤子方法 收敛性 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象