基于优化组合核极限学习机的网络流量预测  被引量:3

Network Flow Prediction Based on Optimization Combined Kernel Extreme Learning Machine

在线阅读下载全文

作  者:刘悦[1] 王芳[1] 

机构地区:[1]开封大学信息工程学院,河南开封475004

出  处:《计算机技术与发展》2016年第6期73-77,共5页Computer Technology and Development

基  金:河南省教育科学技术研究重点项目(15C520016);开封市科技攻关计划项目(130145)

摘  要:为了提高网络流量预测的精度,针对网络流量数据具有非线性、非平稳的特点,提出一种基于经验模态分解(EMD)和混沌粒子群算法优化组合核极限学习机的网络流量预测模型。首先将网络流量时间序列进行EMD分解,提取网络流量数据的各个分量,然后分别对各个分量采用核极限学习机进行预测,最后重构出预测结果。针对传统核极限学习机拟合能力的不足,提出一种基于高斯核和多项式核组合的组合核极限学习机,并且采用改进的混沌粒子群算法优化组合核的核参数组合权值以及惩罚因子,并将其应用到网络流量预测中。实验结果表明,该方法可以有效提高网络流量预测的精度,有助于指导网络资源的合理分配和规划。In order to improve precision of network flow prediction, a prediction model is proposed in this paper based on Empirical Mode Decomposition (EMD) and chaos particle swarm optimization combined kernel extreme learning machine aiming at the features of nonlinear and non-stationary for network flow data. Unit flow is obtained through EMD on the network flow in time sequence, then each unit data is predicted with kernel extreme learning machine. Finally ,the prediction result is reconstructed. In view of the inadequate fitting capacity of traditional kernel extreme learning machine, a machine combining Gaussian kernel and multinomial kernel is proposed and the improved kernel parameter combination and penalty factor of chaos particle swarm optimization with combined kernel are applied in the prediction of network flow. The experiment shows that this method can improve the accuracy of network prediction effectively, and help guide the rational allocation and planning of network resources.

关 键 词:网络流量预测 核极限学习机 组合核函数 混沌粒子群 经验模态分解 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象