检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]渤海大学大学外语教研部,辽宁锦州121013
出 处:《电子设计工程》2016年第11期15-17,共3页Electronic Design Engineering
基 金:辽宁省教育厅科学研究一般项目(W2015015);辽宁省社会科学基金资助项目(L14CYY022)
摘 要:由于学生英语写作成绩预测受诸多因素影响,具有高维、非线性特点,本文基于广义回归神经网络(GRNN)算法原理,构建了GRNN学生英语写作成绩预测模型,并与弹性BP算法改进的BP神经网络模型的预测结果进行对比分析。仿真结果表明:改进的BP神经网络模型的预测最大相对误差为3.23%,GRNN模型的预测最大相对误差仅为-0.72%,表明所建立的GRNN模型的预测精度高、泛化能力强、收敛速度快、调整参数少,验证了将GRNN应用于英语写作成绩预测方案的可行性。Prediction of student English writing scores is influenced by various factors. It has high dimensional and nonlinear features. A prediction model of students' English writing scores was established in this paper. The model was based on the algorithm principle of generalized regression neural networks(GRNN). Its prediction result was analyzed and compared with that of a BP neural network model improved by resilient back-propagation. The simulation results indicate that: the largest relative error of prediction produced by improved BP neural network model is 3.23%, while the one produced by GRNN model is only-0.72%. This implies that the GRNN model has higher prediction accuracy, better generalization ability, faster convergence speed and less adjusting parameters. Thus the feasibility of applying GRNN to English writing score prediction is verified.
分 类 号:TN609[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28