检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家计算机网络与信息安全管理中心,北京100029 [2]中国科学院大学,北京100049 [3]中国科学院信息工程研究所,北京100093 [4]University of California,Santa Cruz,USA
出 处:《中文信息学报》2016年第2期64-73,共10页Journal of Chinese Information Processing
基 金:国家自然科学基金青年基金(61402466)
摘 要:目前,基于用户消费数据构建的推荐系统在电子商务领域发挥着越来越大的作用,而在这些数据中,商家本身具有的地理位置信息忠实地记录了用户的消费痕迹,能够有效反映出用户在地理位置维度上的个人偏好信息,从而对推荐系统具有非常重要的意义。现有工作一般只利用了用户对地点的评价以及地点之间的距离,无法反映出不同地点之间的关联关系,以及用户在不同地点中的偏好权重问题。该文从地理区域划分的角度出发,研究了用户在区域范围内的消费兴趣偏好,以及不同粒度级别的区域划分方法对推荐模型的影响,探索了在推荐过程中有效融合地域信息的方法,考虑了包括地区的全局性影响、用户对地区的偏好等,结合这些因素提出了融合地理位置信息的推荐模型LGE、LGN及LRSVD。通过在Yelp数据集上的实验表明,这些模型相比于传统的推荐算法能够有效提高预测效果。Recommendation system based on users'consumption data is playing an increasingly large application value in e-commerce,And in these data,businesses'location information which can effectively reflect the user's personal geographical preference,would make an important significance on recommender system.Existing work generally use only users'review data as well as the distance between locations,which cannot reflect the relationships between different locations,not to mention that user preferences in different locations should has different weight.This paper proceed from the perspective of geographical area,and study the users'preferences within the area,as well as the impact of different area partition methods on recommend models.Then we explore to incorporate recommender systems with geographical information effectively,including the location's global effects and user's regional preferences,proposing recommendation models,such as LGE,LGN and LRSVD.Experimental evaluation on Yelp dataset demonstrates that our models can effectively improve the prediction results comparing to the traditional methods.
关 键 词:推荐系统 协同过滤 地理位置信息 邻居模型 隐参数模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3