检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高兵兵[1] 高社生[1] 胡高歌[1] 阎海峰[1]
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《系统工程与电子技术》2016年第7期1629-1637,共9页Systems Engineering and Electronics
基 金:国家自然科学基金(61174193);航天支撑技术基金(2014-HT-XGD)资助课题
摘 要:针对无迹卡尔曼滤波(unscented Kalman filter,UKF)在系统噪声统计特性未知或不准确的情况下滤波精度降低甚至发散的问题,提出一种基于极大似然准则与滚动时域估计的自适应UKF算法。首先根据极大似然准则构造关于系统噪声统计的估计模型;然后引入滚动时域策略对所提模型进行优化;最后采用序列二次规划方法求取噪声统计的估计值,得到带有噪声统计估计器的自适应UKF。提出的算法可以实现系统噪声统计的在线估计,克服了标准UKF的缺陷。通过惯性导航/全球定位系统(inertial navigation system/global positioning system,INS/GPS)组合导航系统中的应用实例,验证了提出算法的有效性。The filtering performance of unscented Kalman filter(UKF)would be degraded or even divergent due to unknown or inaccurate system noise statistics.An adaptive UKF based on maximum likelihood principle and receding horizon estimation is presented to address this problem.An estimation model of system noise statistics is constructed according to the maximum likelihood principle.Then,the receding horizon strategy is employed to optimize the above model.Eventually,the sequential quadratic programming is applied to calculate the estimation of noise statistics and the adaptive UKF with a noise statistics estimator can be obtained.It can realize online estimation of system noise statistics and overcome the defect of standard UKF.The performance of the proposed adaptive UKF is verified through the application examples in inertial navigation system/global positioning system integrated navigation system.
关 键 词:自适应无迹卡尔曼滤波 噪声统计估计 极大似然准则 滚动时域估计
分 类 号:V249.3[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.210.110