基于目标规划的履带可变形机器人结构参数设计及验证  被引量:10

Mechanism-parameters design and validation of transformable tracked robot based on goal programming

在线阅读下载全文

作  者:朱岩[1,2] 王明辉[1] 李斌[1] 王聪[1] 

机构地区:[1]中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016 [2]中国科学院大学,北京100049

出  处:《农业工程学报》2016年第14期39-46,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:"十二五"国家科技支撑计划课题(2014BAK12B01)

摘  要:机器人结构参数直接影响其对环境的适应能力,因此合理的结构参数设计至关重要。为更高效设计能适应障碍已知环境的机器人,该研究提出一种基于目标规划的机器人结构参数设计方法,以得到能适应该环境的结构参数最优的机器人,并开发样机进行试验验证。首先提出并设计履带可变形机器人模型,在分析机器人越障机理基础上,建立机器人能够跨越的台阶和沟壑障碍与其结构参数间的关系,并在此基础上建立履带可变形机器人的结构参数目标规划模型。利用遗传算法得到该目标规划问题的最优结构参数:履带轮半径60 mm,摆臂最大长度326 mm,机体长度290 mm,并利用Adams建立仿真模型验证了机器人对目标环境的适应性。样机试验表明机器人能够跨越160 mm高台阶和300 mm宽沟壑,证明了计算得到的结构参数的合理性,及基于目标规划的机器人结构参数设计方法的可行性。该研究可为机器人的结构参数设计提供参考。It is critical to design a reasonable and suitable mechanism parameter for the robot, as it plays an important role in the robot's adaptability to the environments. To efficiently design a robot that was able to adapt itself to an environment where the obstacles were given, a mechanism-parameter designing method was hereby put forward based on the goal programming in order to obtain the optimized robot that could adapt to the environment mentioned. According to configuration evolution and configuration characteristics of tracked robot, a transformable tracked robot configuration was proposed, which only need 3 motors and its single arm could be used as the tracked robot with 2 arms. In theory, applying the ellipse theorem to the configuration design of the tracked robot could ensure that the tracks could be continuously tensioned with the track length unchanged, when the arm was swing. The continuous tension of track was realized by using cam and spring structure. On the basis of the above, the stair climbing and the gully crossing mechanism of the tracked robot was analyzed by using the swing arm's front and back swing. And then, the relationship between the structure parameters of the robot and the stair and gully obstacles was obtained, and the function of the obstacle performance was built. According to the requirements of the goal programming, we selected the distance between driving wheel and the driven wheel, maximum length of the swing arm, driving wheel radius and angle between the track and the horizontal plane in the process of obstacle surmount as the decision variables. Then the values of the highest stair and the widest gully were used to the performance function, and the objective function and object constraint of the goal programming were obtained. As the robot must meet some conditions in the obstacle surmounting process and must improve the calculation efficiency, the initial constraint and no-slip constraint in obstacle surmounting, and the upper and lower boundaries of decision variables w

关 键 词:机器人 遗传算法 优化 目标规划 履带可变形机器人 结构参数 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象