检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李占龙[1,2] 孙大刚[1,2] 宋勇[2] 刘付喜[1] 赵树萍[2]
机构地区:[1]西安理工大学机械与精密仪器学院,西安710028 [2]太原科技大学机械工程学院,太原030024
出 处:《振动与冲击》2016年第16期123-129,共7页Journal of Vibration and Shock
基 金:国家青年科学基金(51305288);山西省回国留学人员科研资助项目(2012-073);山西省青年科学基金(2013021020-1)
摘 要:为了准确掌握黏弹性悬架的动态响应,针对传统整数阶减振模型的不足,引入分数阶导数原理,构建了黏弹性材料FKV本构模型,建立了考虑几何参数的黏弹性悬架分数阶减振模型,利用Grumwald-Letnikov定义将模型中分数阶导数离散化,并转化为状态方程形式,依据矩阵函数理论推导出模型的数值解。以某型安装黏弹性悬架的履带车辆参数为例,分别建立了悬架的动态接触有限元模型和分数阶减振模型,获得了在翻越障碍工况下两种模型响应的对比解。结果表明:分数阶减振模型体现了黏弹性悬架响应具有全局相关性和记忆性,且历史作用渐近加强;黏弹性悬架有较好的缓冲减振性能;分数阶减振模型解与有限元方法计算结果有较好的一致性。旨为下一步的实车试验和实际应用提供理论参考。To obtain dynamic responses of viscoelastic suspension accurately,an FKV constitutive model of viscoelastic materials was developed by employing fractional derivative.A vibration model of viscoelastic suspension considering geometric factor was built based on FKV.Numerical solution was derived by employing Grumwald-Letnikov definition for fraction calculus and matrix function theory.Dynamic contact FEM was established based on a crawler vehicle that was installed viscoelastic suspension and used to compare with the fractional method.Results show that the fractional vibration control model can embody the nonlocal correlation and memory feature of viscoelastic suspension which exhibits excellent vibration control capability.The numerical result shows good agreement with that from the FEM.The study provides essential theoretical references for future in-situ tests and practice applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145