检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李杰[1,2] 周浩[1,2] 张晋[2] 高赟[1] 叶津[2]
机构地区:[1]云南大学信息学院,昆明650091 [2]昆明物理研究所,昆明650223
出 处:《中国图象图形学报》2016年第8期1068-1077,共10页Journal of Image and Graphics
基 金:国家自然科学基金项目(61163024;61262067);云南省应用基础研究计划面上资助项目(2015FB115)~~
摘 要:目的针对基于压缩感知理论的跟踪算法跟踪效率不高和难以抗遮挡的问题,提出一种结合压缩感知和粒子群优化的跟踪算法。方法将粒子群优化算法结合到压缩跟踪算法中,提出了采用粒子群优化的搜索方法替代在确定候选目标时,采用每隔一个像素选取一个候选目标的搜索策略;在目标发生遮挡时,采用粒子群优化的方法进行整幅图全局搜索。结果 20个视频序列数据库的目标跟踪结果表明,本文算法极大地提高了跟踪效率,并有很强的抗目标遮挡和形变的能力从而提高了跟踪的成功率。20个视频数据库进行了定量的分析,平均成功率达到了65.2%,平均中心位置偏差为33.4,平均每秒运行155.5帧。结论提出的跟踪算法优化了搜索目标的计算次数,提高了算法的运行效率,当在目标发生遮挡时,采用粒子群优化进行全局搜索直到目标重新出现,从而提高了跟踪算法的跟踪成功率,本文算法能适用于不同场景,能够提高智能视频监控系统的智能监控性能。Objective Object tracking is a key issue in computer vision. A tracking algorithm based on compressive sensing theory has a high success rate. However, the efficiency of this algorithm requires further improvement. In addition, this al- gorithm has to deal with target occlusion. A tracking algorithm based on compressed sensing and particle swarm optimization (PSO) was proposed by focusing on the aforementioned issues. Method To improve the efficiency of a tracking algorithm based on compressed sensing, the PSO algorithm is incorporated into compression tracking. Furthermore, PSO was chosen over the method that required every other pixel to select target candidates. When a target is occluded, the proposed tracking algorithm can search the total image using PSO. The global search capability of PSO can be efficiently used by the proposed algorithm. This feature can significantly reduce the time required to find the target while improving the anti-occlusion capa- bility of the tracking algorithm based on compressed sensing. Result The proposed algorithm is implemented on 20 publicly available challenging video sequences, and its performance is evaluated through a comparison with 7 state-of-art methods. The time-consuming process of tracking each frame, the average success rate, and the average deviation of the center posi- tion are obtained from the experiment. Experimental results on the 20 video frames show that the proposed algorithm signifi-candy improves tracking efficiency and can adapt to both appearance changes and occlusion. Thus, the tracking success rate is significantly improved. The experimental data indicated that the average success rate reached 65.2 percent at an av- erage of 155.5 frames per second, with an a,~erage center position deviation of 33.4. The tracking success rate of the pro- posed tracking algorithm reached over 85 percent in 9 video sequences, and the center position deviation reached 16 pixels or less in 11 video sequences. Compared with similar algorithms, the average success rate
关 键 词:计算机视觉 目标跟踪 压缩感知 粒子群优化 特征提取 朴素贝叶斯
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145