检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国粮油学报》2016年第8期105-110,共6页Journal of the Chinese Cereals and Oils Association
基 金:西南大学博士基金(SWUB2007021)
摘 要:在对魔芋进行三因素三水平薄层干燥试验的基础上,分析了热风温度(50、60、70℃)、风速(0.75、1.45、1.95 m/s)及芋片厚度(5、6、7 mm)对魔芋干燥速率的影响。试验表明,魔芋干燥时间随着热风温度的升高、风速的增大以及芋片厚度的减小而减少,且热风温度对魔芋干燥速率的影响最显著;用三个经典数学模型(Henderson and Pabis,Lewis和Page模型)及三次多项式模型对试验数据进行拟合,经拟合得出最适合魔芋干燥的模型为三次多项式模型;用BP神经网络建立魔芋干燥的数学模型,并与三次多项式模型的拟合结果进行对比,结果表明,BP神经网络拟合的含水率比平均相对误差为0.94%,精度明显高于三次多项式模型(5.64%)。This paper discussed the effects of air temperature (50,60 ℃ and 70℃ ) , air velocities (0.75,1.45 m/s and 1.95 m/s)and the thickness of konjac pieces(5,6 mm and 7 ram)on the drying rate of konjac. The thin layer drying experiments of konjac were conducted through three - factor and three - level orthogonal experimental de- sign. Tests showed the drying time decreased with the increase of the hot air temperature and air velocities and the decrease of the thickness of konjac slices. The experiments also showed that the air temperature was the main influen- tial factor in the drying process. Three widely recommended mathematical models (Henderson and Pabis, Lewis and Page models)and the Cubic model were selected to fit the experimental data, and the Cubic model was much more ad- equate model for describing the thin layer drying of konjac. The mathematical model of konjac drying based on BP neural network was also established. Through fitting the experimental data using the BP neural network model and the Cubic model respectively, the results indicated that the moisture ratio predicted by the BP neural network model( aver- age relative error was 0.94% )was more accurate than that predicted by the Cubic model(5.64% ).
分 类 号:S375[农业科学—农产品加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177