检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴远远[1] 陆辉山[1] 高强[1] 闫宏伟[1] 王福杰[1]
机构地区:[1]中北大学机械与动力工程学院,山西太原030051
出 处:《中国酿造》2016年第8期69-72,共4页China Brewing
基 金:山西省科技攻关项目(20150311023-2);山西省2015高校科技创新项目(180012-117);山西省重点研发计划社会发展项目(201603D321117)
摘 要:可溶性固形物含量(SSC)是食品行业的重要技术参数之一。利用近红外光谱技术对不同醋龄的老陈醋SSC进行分析。在不同光谱预处理下,分别采用主成分回归(PCR)和偏最小二乘法(PLS)建立SSC的定量分析模型。结果表明,采用5点平滑预处理后,利用PLS建立的老陈醋SSC的定量分析模型最优,其校正集的相关系数R为0.999 9,校正标准偏差(RMSEC)为0.038 3,预测标准偏差(RMSEP)和交叉验证标准偏差(RMSECV)分别为0.082 1,0.096 4。表明采用近红外光谱技术对不同醋龄的老陈醋SSC进行定量分析建模是可行的。The soluble solid content (SSC) is one of the important technical parameters of the food industry. The SSC in mature vinegar with different vinegar ages was analyzed by near infrared spectroscopy technology. Under the different spectra pretreatment, quantitative analysis model of SSC was established by principal component regression and partial least squares(PLS). The results showed that after using 5 point smooth pretreatment, the quantitative analysis model of SSC established by PLS was the best. The correlation coefficient R of correction set was 0.999 9, root mean square error of calibration, root mean square error of prediction and root mean squares error of cross-validation was 0.038 3, 0.082 1 and 0.096 4, respectively. It was feasible to establish the quantitative analysis model of SSC in mature vinegar with different ages by near infrared spectroscopy technology.
关 键 词:近红外光谱 可溶性固形物含量 主成分回归 偏最小二乘法:预处理
分 类 号:TS264.2[轻工技术与工程—发酵工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.93