Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia  被引量:4

Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

在线阅读下载全文

作  者:Dae Young Yoo Kwon Young Lee Joon Ha Park Hyo Young Jung Jong Whi Kim Yeo Sung Yoon Moo-Ho Won Jung Hoon Choi In Koo Hwang 

机构地区:[1]Department of Anatomy and Cell Biology,College of Veterinary Medicine,and Research Institute for Veterinary Science,Seoul National University [2]Department of Anatomy,College of Veterinary Medicine and Institute of Veterinary Science,Kangwon National University [3]Department of Neurobiology,School of Medicine,Kangwon National University

出  处:《Neural Regeneration Research》2016年第8期1254-1259,共6页中国神经再生研究(英文版)

基  金:supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education,No.NRF-2013R1A1A2059364,NRF-2015R1D1A3A01020635);by 2013 Research Grant from Kangwon National University;partially supported by the Research Institute for Veterinary Science,Seoul National University

摘  要:Recent evidence exists that glucose transporter 3(GLUT3) plays an important role in the energy metabolism in the brain.Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and m RNA levels rather than tissue levels.In the present study,we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia.In the sham-operated group,GLUT3 immunoreactivity in the hippocampal CA1 region was weak,in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia,and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia,with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia.In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein(GFAP),we observed strong GLUT3 immunoreactivity in the astrocytes.GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion.In a double immunofluorescence study using GLUT3 and doublecortin(DCX),we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia.GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus.These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.Recent evidence exists that glucose transporter 3(GLUT3) plays an important role in the energy metabolism in the brain.Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and m RNA levels rather than tissue levels.In the present study,we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia.In the sham-operated group,GLUT3 immunoreactivity in the hippocampal CA1 region was weak,in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia,and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia,with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia.In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein(GFAP),we observed strong GLUT3 immunoreactivity in the astrocytes.GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion.In a double immunofluorescence study using GLUT3 and doublecortin(DCX),we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia.GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus.These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.

关 键 词:nerve regeneration transient forebrain ischemia glucose transporter 3 pyramidal cells ASTROCYTES NEUROBLASTS neural regeneration 

分 类 号:R743.31[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象